325 research outputs found

    Supergravity Computations without Gravity Complications

    Get PDF
    The conformal compensator formalism is a convenient and versatile representation of supergravity (SUGRA) obtained by gauge fixing conformal SUGRA. Unfortunately, practical calculations often require cumbersome manipulations of component field terms involving the full gravity multiplet. In this paper, we derive an alternative gauge fixing for conformal SUGRA which decouples these gravity complications from SUGRA computations. This yields a simplified tree-level action for the matter fields in SUGRA which can be expressed compactly in terms of superfields and a modified conformal compensator. Phenomenologically relevant quantities such as the scalar potential and fermion mass matrix are then straightforwardly obtained by expanding the action in superspace.Comment: 10 pages; v2: references update

    Spontaneous rotating vortex rings in a parametrically driven polariton fluid

    Full text link
    We present the theoretical prediction of spontaneous rotating vortex rings in a parametrically driven quantum fluid of polaritons -- coherent superpositions of coupled quantum well excitons and microcavity photons. These rings arise not only in the absence of any rotating drive, but also in the absence of a trapping potential, in a model known to map quantitatively to experiments. We begin by proposing a novel parametric pumping scheme for polaritons, with circular symmetry and radial currents, and characterize the resulting nonequilibrium condensate. We show that the system is unstable to spontaneous breaking of circular symmetry via a modulational instability, following which a vortex ring with large net angular momentum emerges, rotating in one of two topologically distinct states. Such rings are robust and carry distinctive experimental signatures, and so they could find applications in the new generation of polaritonic devices.Comment: 6 pages, 4 figure

    Search for the Radiative Capture d+d->^4He+\gamma Reaction from the dd\mu Muonic Molecule State

    Full text link
    A search for the muon catalyzed fusion reaction dd --> ^4He +\gamma in the dd\mu muonic molecule was performed using the experimental \mu CF installation TRITON and NaI(Tl) detectors for \gamma-quanta. The high pressure target filled with deuterium at temperatures from 85 K to 800 K was exposed to the negative muon beam of the JINR phasotron to detect \gamma-quanta with energy 23.8 MeV. The first experimental estimation for the yield of the radiative deuteron capture from the dd\mu state J=1 was obtained at the level n_{\gamma}\leq 2\times 10^{-5} per one fusion.Comment: 9 pages, 3 Postscript figures, submitted to Phys. At. Nuc

    Ground-based water vapour soundings by microwave radiometry and Raman lidar on Jungfraujoch (Swiss Alps)

    Get PDF
    International audienceWater vapour has been measured from the International Scientific Station Jungfraujoch (ISSJ, 47° N, 7° E, 3580m above sea level) during the winters of 1999/2000 and 2000/2001 by microwave radiometry and Raman lidar. The abundance of atmospheric water vapour between the planetary boundary layer and the upper stratosphere varies over more than three orders of magnitude. The currently used measurement techniques are only suited to determine the abundance of water vapour in different atmospheric regimes. None can resolve the vertical distribution profile from ground level to the top of the stratosphere by itself. We present such a water vapour profile where simultaneous measurements from a Raman lidar and a microwave radiometer were combined to cover both the troposphere and the stratosphere, respectively. We also present a study of the stratospheric and tropospheric water vapour variability for the two consecutive winters

    Infection of neuronal cells by Chlamydia pneumoniae and Herpes simplex virus type 1 alters expression of genes associated with Alzheimer’s disease

    Get PDF
    Several studies have suggested an infectious etiology for Alzheimer’s disease (AD). We have been investigating a potential role for both Chlamydia pneumoniae and Herpes simplex virus type 1 (HSV1) in the initiation of sporadic late-onset AD. Our current study focuses on investigation of gene expression using Alzheimer-specific Real-Time PCR microarrays on RNA derived from SKNMC human neuronal cells infected with C. pneumoniae and/or HSV1. There are distinct differences in the patterns of gene regulation by the two pathogens. For example, C. pneumoniae induces expression of genes involved in amyloid production and processing, such as β-amyloid precursor protein (APP), β-site APP-cleaving enzyme 1 (BACE1), a γ-secretase complex protein (nicastrin [NCSTN]), NEDD8 activating enzyme E1 (NAE1), as well as a mitochondria-associated protein (hydroxysteroid (17-β) dehydrogenase 10 [HSD17B10]), α-2-macroglobulin (A2M) and the metallopeptidase ADAM9. Conversely, HSV1 tends to down-regulate expression of many genes, including those encoding a component of the γ-secretase complex (anterior pharynx defective 1 homolog A [APH1A]), low density lipoprotein related proteins (LRP1, LRP6, and LRP8), β-synuclein (SNCB) and ubiquinols (UQCRC1, UQCRC2). Co-infection with C. pneumoniae and HSV-1 produced a greater down-regulation of gene expression than that seen with HSV1 alone for several genes, including APP-like proteins (APLP1, APLP2) and kinases (cell division cycle 2 protein [CDC2], cyclin-dependent kinase [CDK5] and CDC2-related kinase [CDKL1]). Our data indicate that both C. pneumoniae and HSV1 can modulate expression of genes associated with AD, and thus could contribute to AD pathology, however these two pathogens likely act via different pathways. Furthermore, for several genes, co-infection with both C. pneumoniae and HSV1 appears to exacerbate the changes in gene expression seen with HSV1 alone.https://digitalcommons.pcom.edu/posters/1007/thumbnail.jp

    Changes in Expression of Genes Associated with Autophagy and Apoptosis in Neuronal Cells Infected with HSV-1may Suggest Infection-induced Mechanisms of Neurodegeneration

    Get PDF
    Background:This study investigates the potential role of herpes simplex virus type 1 (HSV-1) in the pathogenesis of neurodegenerative disorders, such as Alzheimer’s disease (AD), by exploring changes in gene expression related to antiviral immunity and the autophagic pathway. Autophagy is a process that recycles organelles and proteins to create more energy for the cell. This pathway has been linked to neurodegeneration, as malfunctions in the completion of this process lead to a decline in overall cellular health and function. Interestingly, HSV-1 has been shown to block the completion of autophagy, which would potentially contribute to the cytopathic changes observed in AD

    QCD-like Theories at Finite Baryon and Isospin Density

    Get PDF
    We use 2-color QCD as a model to study the effects of simultaneous presence of chemical potentials for isospin charge, μI\mu_I, and for baryon number, μB\mu_B. We determine the phase diagrams for 2 and 4 flavor theories using the method of effective chiral Lagrangians at low densities and weak coupling perturbation theory at high densities. We determine the values of various condensates and densities as well as the spectrum of excitations as functions of μI\mu_I and μB\mu_B. A similar analysis of QCD with quarks in the adjoint representation is also presented. Our results can be of relevance for lattice simulations of these theories. We predict a phase of inhomogeneous condensation (Fulde-Ferrel-Larkin-Ovchinnikov phase) in the 2 colour 2 flavor theory, while we do not expect it the 4 flavor case or in other realizations of QCD with a positive measure.Comment: 17 pages, 14 figure

    Analysis of Chlamydia pneumoniae-infected monocytes following incubation with a novel peptide, acALY18, implicates the inflammasome in clearance of infection

    Get PDF
    Chlamydia pneumoniae infection may be a trigger for the pathology observed in sporadic lateonset Alzheimer’s disease as a function of initiating neuroinflammation following entry of the organism into the brain. We have hypothesized that one entry mechanism may be by bloodborne infected monocytes trafficking the infection into the brain. This study focuses on infection of monocytes in vitro followed by analysis using immunofluorescence labeling and RT-PCR-microarray techniques. The microarrays utilized consisted of an Alzheimer’s disease pathway array and an innate and adaptive immunity array from SAbiosciences. Analysis by real time PCR for both gene arrays was performed on uninfected and C. pneumoniae-infected THP1 monocytes at 48 hr post-infection. In addition, we analyzed innate and adaptive immunity gene regulation changes following treatment of infected cells with a unique peptide, acALY18, derived from the endogenously expressed endoplasmic reticulum protein TRPC1. The peptide appears to stimulate the innate immune system through activation of the inflammasome. C. pneumoniae prominently infected THP1 monocytes at 24-48hr. Numerous large inclusions were identified using specific chlamydial monoclonal antibodies. Monocyte gene expression changes induced by infection with C. pneumoniae revealed significant up-regulation of 45 genes in the Alzheimer’s disease pathway. These included genes involved in: b-amyloid processing and clearance, apoptosis, proteases and protein kinases, and lipid metabolism. In contrast, infection resulted in significant changes in 30 genes governing innate and adaptive immunity including those for: the inflammatory response, host defense against bacteria, cytokines, chemokines, and an antibacterial humoral response. Intriguingly, following incubation of C. pneumoniae-infected cells with the acALY18 peptide (25-50nM) at 24hr post-infection, there was significant clearance of the organism from the monocytes as well as up-regulation of 38 genes. Our data suggest that C. pneumoniae infection of monocytes has a profound effect on gene regulation for both innate and adaptive immunity and for Alzheimer’s disease. Stimulating the innate immune response using the novel peptide, acALY18, promotes clearance of C. pneumoniae from infected monocytes; thereby implicating the inflammasome as a key component in eradicating this infection.https://digitalcommons.pcom.edu/posters/1005/thumbnail.jp
    corecore